Review of Inference: Key Terms

1. Estimation v. Inference

- a. Estimation: What are your best parameter estimates? [BLUE]
- b. Inference: Are you sure/close? [confidence intervals; hypothesis tests]
- 2. **Confidence intervals**: Intervals generated in this fashion will contain the true parameter value some percentage of the time
- 3. **Hypothesis testing**: Can you reject the null hypothesis at some acceptable statistical significance level?

Our focus: Estimating the Population Mean

- 4. $Y \sim N(\mu, \sigma^2) \dots$ random sampling: $\{Y_1, Y_2, \dots, Y_n\}$ iid ~ Y
- 5. Use $\overline{Y} = \frac{1}{n} \sum Y_i$ to estimate μ .

6.
$$\overline{Y} = \frac{1}{n} \sum Y_i \sim N(\mu, \frac{\sigma^2}{n}) \dots \frac{\sigma}{\sqrt{n}}$$
 is the standard deviation (sd) of $\overline{Y} \dots \frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$

7. But the variance is unknown... so use the unbiased estimator $S_Y^2 = \frac{1}{n-1} \sum (Y_i - \overline{Y})^2$ to estimate σ^2

- 8. $\frac{S_Y}{\sqrt{n}}$ is the *Standard Error* (se) of the sample mean, and an estimator of $\frac{\sigma}{\sqrt{n}}$, sd(\overline{Y})
- 9. The **t statistic** is the cornerstone of inference: $\frac{\overline{Y} \mu}{S_v / \sqrt{n}} \sim t_{n-1}$
 - a. Has a t distribution with n-1 dofs

Confidence Intervals

10. Confidence interval estimator:
$$\left[\overline{Y} - c\frac{S_Y}{\sqrt{n}}, \ \overline{Y} + c\frac{S_Y}{\sqrt{n}}\right] = \left[\overline{Y} \pm c\frac{S_Y}{\sqrt{n}}\right]$$

- a. c comes from the t statistic and t_{n-1} , the t distribution with n-1 dofs
- b. Effectively: estimate $\pm c$ std. errors (c=2 is not a bad place to start)

Classical Hypothesis Testing

- 11. Null and Alternative Hypotheses
 - a. H₀: the *Null* Hypothesis (the hypothesis we are testing)
 - b. H₁: the *Alternative* Hypothesis, the alternative to H₀
 - c. Almost always focus on H₀: The true parameter value is 0 ($\mu = 0$)
- 12. Two types of Error
 - a. Type I False Rejection; traditionally receives the most attention; *protecting the null*; reject the Null only if there is overwhelming evidence to the contrary
 - b. Type II False Acceptance
- 13. Significance Level: α
 - a. the acceptable probability of a Type I error = $P(\text{Reject } H_0 \mid H_0 \text{ is true})$
 - b. small is beautiful: 10%, 5%, 1%, ...

14. Test: Reject the Null Hypothesis $H_0: \mu = 0$ if $\left| \frac{\overline{Y}}{S_Y / \sqrt{n}} \right| > c_{\alpha}$

- a. c_{α} is defined by $P(|t_{n-1}| > c_{\alpha}) = \alpha$, the significance level (if t statistic is larger in magnitude than c_{α})
- b. So: Reject the Null Hypothesis if the observed sample mean is at least c_{α} standard errors (*se*'s) away from 0

15. *p* value:
$$P(|t_{n-1}| > \left| \frac{\overline{y}}{s_y / \sqrt{n}} \right|) = p$$

.

a. probability of being $\left| \frac{\overline{y}}{s_y / \sqrt{n}} \right|$ standard errors (*se*'s) or further away from 0

16. Hypothesis testing is easier with p values: $p < \alpha \Leftrightarrow \left| \frac{\overline{y}}{s_y / \sqrt{n}} \right| > c_{\alpha}$

- a. Look for small p-values below the significance level
- b. You don't need to worry about different dofs (impacting critical values) just look at the p-value and see if it's small.